Siphonein is a C19 acylated siphonaxanthin found in some edible green algae (e.g., Codium fragile and Caulerpa lentillifera). Although the content of siphonein in these green algae is similar to or higher than that of siphonaxanthin, studies of health-related biological activity of siphonein are much less than those of siphonaxanthin. Given the difference in the position of the acyl chain, one cannot infer intestinal absorption of siphonein from other general carotenoid fatty acid esters. In this study, we fi rst investigated the intestinal absorption of siphonein using mouse and cell culture models. A small amount of siphonein was detected in the plasma of treated mice, and its concentration was higher than that of siphonaxanthin (i.e., the hydrolyzed product of ingested siphonein) from 1 to 6 h after administration. Pharmacological inhibition tests with differentiated Caco-2 cells showed that Nieman-Pick C1-like 1-mediated facilitated diffusion was involved in the cellular uptake of siphonein. These results indicate that, unlike general carotenoid fatty acid esters, siphonein can be absorbed without hydrolysis. We also evaluated the anti-infl ammatory effect of siphonein in differentiated Caco-2 cells. Siphonein pretreatment modulated lipopolysaccharide-induced cellular lipidome alterations and suppressed mRNA expression of proinfl ammatory chemokines, CXCL8 protein release, and activation of NF-B. This study provides new insights into the absorption processes of carotenoids and shows the anti-infl ammatory effect of siphonein for the fi rst time.