Antimicrobial peptides (AMPs) are a class of small peptides that widely exist in nature and they are an important part of the innate immune system of different organisms. AMPs have a wide range of inhibitory effects against bacteria, fungi, parasites and viruses. The emergence of antibiotic-resistant microorganisms and the increasing of concerns about the use of antibiotics resulted in the development of AMPs, which have a good application prospect in medicine, food, animal husbandry, agriculture and aquaculture. This review introduces the progress of research on AMPs comprehensively and systematically, including their classification, mechanism of action, design methods, environmental factors affecting their activity, application status, prospects in various fields and problems to be solved. The research progress on antivirus peptides, especially anti-coronavirus (COVID-19) peptides, has been introduced given the COVID-19 pandemic worldwide in 2020.
Gut microorganisms participate in many physiological processes. In particular, Clostridium butyricum can modulate gut microorganisms and treat diseases. The colonization and persistence of strains in the gut contribute to beneficial effects, and the colonization by C. butyricum in the gut is currently unknown. We investigated the total intestinal contents of C. butyricum at 12 h, 24 h, 48 h, and four and six days using real-time reverse transcription-PCR, after oral administration of C. butyricum to rats for seven consecutive days. We assessed the bacterial community structure using Illumina MiSeq sequencing. The results showed that C. butyricum was mainly colonized in the colon. The total content of C. butyricum in the gut increased significantly at 12 h after administration. Exogenous C. butyricum could still be detected in the gut six days after administration. Administration of C. butyricum significantly enhanced gut microbial diversity. The relative abundance of short-chain fatty acid-producing bacterial genera was shown to be higher than that of the control group, and treatment with C. butyricum elevated Firmicutes and diminished Bacteroidetes phyla compared with to the control group. These findings laid the foundation for the study of probiotic colonization capacity and the improvement of microflora for the prevention of gut diseases.
ScopeCachexia, which is often marked by skeletal muscular atrophy, is one of the leading causes of death in cancer patients. Astaxanthin, a carotenoid obtained from marine organisms that can aid in the prevention and treatment of a variety of disorders. In this study, to assess whether astaxanthin ameliorates weight loss and skeletal muscle atrophy in sorafenib‐treated hepatocellular carcinoma mice is aimed.Methods and resultsH22 mice are treated with 30 mg kg−1 day−1 of sorafenib and 60 mg kg−1 day−1 of astaxanthin by gavage lasted for 18 days. Sorafenib does not delay skeletal muscle atrophy and weight loss, although it does not reduce tumor burden. Astaxanthin dramatically delays weight loss and skeletal muscle atrophy in sorafenib‐treating mice, without affecting the food intake. Astaxanthin inhibits the tumor glycolysis, slows down gluconeogenesis, and improves insulin resistance in tumor‐bearing mice. Astaxanthin increases glucose competition in skeletal muscle by targeting the PI3K/Akt/GLUT4 signaling pathway, and enhances glucose utilization efficiency in skeletal muscle, thereby slowing skeletal muscle atrophy.ConclusionThe findings show the significant potential of astaxanthin as nutritional supplements for cancer patients, as well as the notion that nutritional interventions should be implemented at the initiation of cancer treatment, as instead of waiting until cachexia sets in.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.