Antimicrobial peptides (AMPs) are a class of small peptides that widely exist in nature and they are an important part of the innate immune system of different organisms. AMPs have a wide range of inhibitory effects against bacteria, fungi, parasites and viruses. The emergence of antibiotic-resistant microorganisms and the increasing of concerns about the use of antibiotics resulted in the development of AMPs, which have a good application prospect in medicine, food, animal husbandry, agriculture and aquaculture. This review introduces the progress of research on AMPs comprehensively and systematically, including their classification, mechanism of action, design methods, environmental factors affecting their activity, application status, prospects in various fields and problems to be solved. The research progress on antivirus peptides, especially anti-coronavirus (COVID-19) peptides, has been introduced given the COVID-19 pandemic worldwide in 2020.
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) serves as a primary plant defense response against microbial pathogens, with MEKK1, MKK1/MKK2, and MPK4 functioning as a MAP kinase cascade downstream of PAMP receptors. Plant Resistance (R) proteins sense specific pathogen effectors to initiate a second defense mechanism, termed effector-triggered immunity (ETI). In a screen for suppressors of the mkk1 mkk2 autoimmune phenotype, we identify the nucleotide-binding leucine-rich repeat (NB-LRR) protein SUMM2 and find that the MEKK1-MKK1/MKK2-MPK4 cascade negatively regulates SUMM2-mediated immunity. Further, the MEKK1-MKK1/MKK2-MPK4 cascade positively regulates basal defense targeted by the Pseudomonas syringae pathogenic effector HopAI1, which inhibits MPK4 kinase activity. Inactivation of MPK4 by HopAI1 results in activation of SUMM2-mediated defense responses. Our data suggest that SUMM2 is an R protein that becomes active when the MEKK1-MKK1/MKK2-MPK4 cascade is disrupted by pathogens, supporting the hypothesis that R proteins evolved to protect plants when microbial effectors suppress basal resistance.
In Arabidopsis thaliana, the MEKK1-MKK1/MKK2-MPK4 mitogen-activated protein (MAP) kinase cascade represses cell death and immune responses. In mekk1, mkk1 mkk2, and mpk4 mutants, programmed cell death and defense responses are constitutively activated, but the mechanism by which MEKK1, MKK1/MKK2, and MPK4 negatively regulate cell death and immunity was unknown. From a screen for suppressors of mkk1 mkk2, we found that mutations in suppressor of mkk1 mkk2 1 (summ1) suppress the cell death and defense responses not only in mkk1 mkk2 but also in mekk1 and mpk4. SUMM1 encodes the MAP kinase kinase kinase MEKK2. It interacts with MPK4 and is phosphorylated by MPK4 in vitro. Overexpression of SUMM1 activates cell death and defense responses that are dependent on the nucleotide bindingleucine-rich repeat protein SUMM2. Taken together, our data suggest that the MEKK1-MKK1/MKK2-MPK4 kinase cascade negatively regulates MEKK2 and activation of MEKK2 triggers SUMM2-mediated immune responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.