Low-level computer vision algorithms have high computational requirements. In this study, we present two realtime architectures using resource constrained FPGA and GPU devices for the computation of a new algorithm which performs tone mapping, contrast enhancement, and glare mitigation. Our goal is to implement this operator in a portable and battery-operated device, in order to obtain a low vision aid specially aimed at visually impaired people who struggle to manage themselves in environments where illumination is not uniform or changes rapidly. This aid device processes in real-time, with minimum latency, the input of a camera and shows the enhanced image on a head mounted display (HMD). Therefore, the proposed operator has been implemented on batteryoperated platforms, one based on the GPU NVIDIA ION2 and another on the FPGA Spartan III, which perform at rates of 30 and 60 frames per second, respectively, when working with VGA resolution images (640 × 480).