Convolutional neural networks (CNNs) excel in a wide variety of computer vision applications, but their high performance also comes at a high computational cost. Despite efforts to increase efficiency both algorithmically and with specialized hardware, it remains difficult to deploy CNNs in embedded systems due to tight power budgets. Here we explore a complementary strategy that incorporates a layer of optical computing prior to electronic computing, improving performance on image classification tasks while adding minimal electronic computational cost or processing time. We propose a design for an optical convolutional layer based on an optimized diffractive optical element and test our design in two simulations: a learned optical correlator and an optoelectronic two-layer CNN. We demonstrate in simulation and with an optical prototype that the classification accuracies of our optical systems rival those of the analogous electronic implementations, while providing substantial savings on computational cost.
. Naive linear interpolation generates an unrealistic double highlight (c). Since we used a parametric BRDF model, we can compute the ground-truth in-between BRDF by interpolating the parameters (d). Our approach has no knowledge of the parametric BRDF representation but is nonetheless able to produce a similar output (e).
AbstractInterpolation between pairs of values, typically vectors, is a fundamental operation in many computer graphics applications. In some cases simple linear interpolation yields meaningful results without requiring domain knowledge. However, interpolation between pairs of distributions or pairs of functions often demands more care because features may exhibit translational motion between exemplars. This property is not captured by linear interpolation. This paper develops the use of displacement interpolation for this class of problem, which provides a generic method for interpolating between distributions or functions based on advection instead of blending. The functions can be non-uniformly sampled, high-dimensional, and defined on non-Euclidean manifolds, e.g., spheres and tori. Our method decomposes distributions or functions into sums of radial basis functions (RBFs). We solve a mass transport problem to pair the RBFs and apply partial transport to obtain the interpolated function. We describe practical methods for computing the RBF decomposition and solving the transport problem. We demonstrate the interpolation approach on synthetic examples, BRDFs, color distributions, environment maps, stipple patterns, and value functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.