Phosphorus (P) is a major driver of eutrophication, especially in anthropogenically impacted coastal waters, and determining its bioavailability is important for providing a good estimation of the eutrophication potential in aquatic systems. Therefore, we observed the bioavailability of P in four laboratory experiments on water samples collected in March, June, September, and December 2018. In the experiments, all P fractions of the sampled water were investigated in three treatments (“unfiltered” and “10 μm”- and “1.2 μm”-filtered). The bioavailability (utilization by organisms within several days) ranged from 9 to 100% for dissolved P, and 34 to 100% for particulate P. However, one of the particulate P fractions was bound in biomass and therefore was not directly bioavailable. The conditions in the March experiment represented a natural spring bloom with a residual potential for planktonic growth. In June and September, the nutrients needed for growth were depleted in the different treatments. In December, a spring bloom was simulated by the laboratory conditions. Preferential P uptake by a specific group of organisms could not be observed directly, although a trend of higher utilization of dissolved P by heterotrophic bacteria was observed. In conclusion, the bioavailable P (sum of dissolved P fractions and one particulate P fraction) accounted for between 20 and 94% of the total P. Consequently, our experiments demonstrated that the commonly monitored P fractions lead to an underestimation of the bioavailable P and thus of potential for eutrophication in aquatic systems, too.