The chemical elements of proteins are similar to that of DNA (e.g., C, H, O, and N), and DNA shows different knotted architectures. So we imagine that proteins may show a wealth of highly complex structures, especially when proteins interact with each other. The imagination was proved by synthesizing gold nanoparticles (GNPs) to capture the lifelike protein structures. The optical responses (i.e., color) of as-prepared GNPs are found to be characteristic to a given protein (or heavy metal ion). Based on the "three colors" principle of Thomas Young, we extracted the red, green, and blue (RGB) alterations of as-synthesized GNPs to fabricate multichannel sensor arrays for proteins (or heavy metal ions) discrimination. The designed multichannel sensor arrays demonstrate possibilities in semiquantitative analysis of multiple analytes (e.g., proteins and heavy metal ions). This work is believed to open new opportunities for GNPs-based label-free sensing.