In an access network based on a passive optical network architecture, coherent detection is attractive since it allows for high receiver sensitivity coupled with inherent frequency selectivity. Nevertheless, solutions employed in core networks are prohibitively complex and costly, requiring the optical complexity of the coherent receivers to be reduced to make them feasible for access networks. For monolithic integration, a key challenge is posed by the polarization beam splitter (PBS). If however the PBS is removed, the receiver needs to be re-designed to be insensitive to the incoming polarization state of the received signal. In this paper, we experimentally demonstrate a polarization-insensitive (i.e., polarization-independent) coherent receiver for the optical network unit (ONU) in passive optical networks (PONs). The receiver consists of only a 3 dB coupler and a single balanced photodiode (BPD) such that the complexity is comparable to a direct detection receiver. The proposed cost-effective coherent receiver is implemented by using the Alamouti polarizationtime block coding (PTBC) scheme combined with heterodyne detection. To verify the technique, the Alamouti-coded OFDM signal is rotated over the full Poincaré sphere. Compared to the DP-OFDM signal operating at a net bit rate of 10 Gb/s per polarization (a gross bit rate of 10.7 Gb/s including a 7% FEC overhead), only a 0.6 dB sensitivity degradation is observed. The sensitivity at the FEC threshold, assumed to be 4 × 10 −3 , is measured to be -41.5 dBm (56 photons-per-bit) on a 25-GHz grid. Following this, different channel spacings are investigated and, the signal is transmitted over 80 km of standard single mode fiber (SSMF) in a long-reach (LR) wavelength division multiplexed (WDM) PON system. The loss budgets are found to be 43.0 dB and 42.8 dB for 50-and 25-GHz grids, respectively.Index Terms-Optical access, coherent detection, polarization, Alamouti, polarization-time block code (PTBC), wavelength division multiplexing (WDM), passive optical network (PON).