Targeting glutamine metabolism via pharmacological inhibition of glutaminase has been translated into clinical trials as a novel cancer therapy, but available drugs lack optimal safety and efficacy. In this study, we used a proprietary emulsification process to encapsulate bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES), a selective but relatively insoluble glutaminase inhibitor, in nanoparticles. BPTES nanoparticles demonstrated improved pharmacokinetics and efficacy compared with unencapsulated BPTES. In addition, BPTES nanoparticles had no effect on the plasma levels of liver enzymes in contrast to CB-839, a glutaminase inhibitor that is currently in clinical trials. In a mouse model using orthotopic transplantation of patient-derived pancreatic tumor tissue, BPTES nanoparticle monotherapy led to modest antitumor effects. Using the HypoxCR reporter in vivo, we found that glutaminase inhibition reduced tumor growth by specifically targeting proliferating cancer cells but did not affect hypoxic, noncycling cells. Metabolomics analyses revealed that surviving tumor cells following glutaminase inhibition were reliant on glycolysis and glycogen synthesis. Based on these findings, metformin was selected for combination therapy with BPTES nanoparticles, which resulted in significantly greater pancreatic tumor reduction than either treatment alone. Thus, targeting of multiple metabolic pathways, including effective inhibition of glutaminase by nanoparticle drug delivery, holds promise as a novel therapy for pancreatic cancer.pancreatic ductal adenocarcinoma | glutaminolysis | glucose metabolism | KRAS mutation | intratumoral hypoxia P atients with pancreatic ductal adenocarcinoma (PDAC) have among the highest fatality rates of all cancers (1). Pancreatic cancer is predicted to become the second-leading cause of cancer death in the United States by the year 2030 (2). Over 90% of PDACs display mutations in oncogenic KRAS (Kirsten rat sarcoma viral oncogene homolog) (3, 4), a known regulator of glutamine metabolism that can render cancer cells dependent on glutamine for survival and proliferation (5, 6)-a state known as "glutamine addiction" (7, 8)-suggesting that dependency on glutamine could be exploited to develop new therapies for KRAS-mutated PDAC. The first step of glutamine metabolism is the conversion of glutamine to glutamate and ammonia, which is catalyzed by glutaminase (GLS). Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES), which is an allosteric, time-dependent (9), and specific inhibitor of GLS1, exhibits unique binding at the oligomerization interface of the glutaminase tetramer (10, 11). Although BPTES is more selective than other prototype glutaminase inhibitors, such as 6-diazo-5-oxo-L-norleucine (12) or ebselen (9), and can effectively inhibit GLS1 (13) and tumor growth (13-15), poor solubility (0.144 μg/mL) (16) has limited its clinical development. Recently, CB-839 (17) was tested in a phase I clinical trial. Abnormal liver and kidney function tests, lymphop...