Combinatorial libraries are synthesized by combining smaller reagents (building blocks), the price of which is an important component of the total costs associated with the synthetic exercise. A significant portion of commercially available reagents are too expensive for large scale work. In this study, 13 commonly used reagent classes in combinatorial library synthesis (primary and secondary amines, carboxylic acids, alcohols, ketones, aldehydes, boronic acids, acyl halides, sulfonyl chlorides, isocyanates, isothiocyanates, azides and chloroformates) were analyzed with respect to the cost, physicochemical properties (molecular weight and calculated logP), chemical diversity, and 3D-likeness using a large data set. The results define the chemical space accessible under a constraint of limited financial resources.