Foam and emulsion stability has long been believed to correlate with the surface shear viscosity of the surfactant used to stabilize them. Many subtleties arise in interpreting surface shear viscosity measurements, however, and correlations do not necessarily indicate causation. Using a sensitive technique designed to excite purely surface shear deformations, we make the most sensitive and precise measurements to date of the surface shear viscosity of a variety of soluble surfactants, focusing on SDS in particular. Our measurements reveal the surface shear viscosity of SDS to be below the sensitivity limit of our technique, giving an upper bound of order 0.01 μN·s/m. This conflicts directly with almost all previous studies, which reported values up to 10 3 -10 4 times higher. Multiple control and complementary measurements confirm this result, including direct visualization of monolayer deformation, for SDS and a wide variety of soluble polymeric, ionic, and nonionic surfactants of high-and low-foaming character. No soluble, small-molecule surfactant was found to have a measurable surface shear viscosity, which seriously undermines most support for any correlation between foam stability and surface shear rheology of soluble surfactants.S urfactants facilitate the formation of foams and emulsions by reducing surface tension, thereby lowering the energy required to create excess surface area (1-3). These multiphase materials, however, are thermodynamically unstable, and coarsen through bubble or drop coalescence, as well as diffusive exchange between bubbles or drops (1, 4-6). Surfactants can additionally be used to control this coarsening rate, with effective foaming surfactants retarding coalescence, and defoamers speeding it. For example, coalescence may be slowed by repulsive forces between the surfactant monolayers adsorbed to either side of the (continuous) phase separating bubbles or drops. Ionic surfactants, for example, introduce electrostatic repulsions (1, 2, 5), whereas nonionic surfactants (e.g., polymers, proteins, or particles) provide steric barriers against coalescence (7-9). Moreover, Marangoni stresses arise when compressional or dilatational deformations drive gradients in surfactant concentration (and thus surface tension). The resulting dilatational surface elasticity resists surface area changes, slowing drainage and rupture of the thin fluid films between adjacent bubbles (4, 5, 10-13).Additionally, surfactant monolayers may exhibit nontrivial rheological responses. For example, the surface shear viscosity η S gives the excess viscosity associated with shearing deformations within the 2D surfactant monolayer. Because surfactant interfaces are inherently compressible, they may exhibit a surface dilatational viscoelasticity η D *, in addition to η S *, even under small-amplitude deformations. This contrasts with incompressible Newtonian liquids, which are well-described by a single scalar viscosity. Moreover, surface shear and dilatational viscosities need not have equal (14), or even compara...