Stimuli-responsive materials undergo structural changes in response to an external trigger (i.e., pH, heat, or light). This process has been previously used for a range of applications in biomedicine and microdevices and has recently gained considerable attention in controlled drug release. Here, we use a near-infrared (NIR) light responsive polymer-nanorod composite whose glass transition temperature (T(g)) is in the range of body temperature to control and enhance the release of a small-molecule drug (<800 Da). In addition to increased temperature and resulting changes in molecule diffusion, the photothermal effect (conversion of NIR light to heat) adjusts the composite above the T(g). Specifically, at normal body temperature (T < T(g)), the structure is glassy and release is limited, whereas when T > T(g), the polymer is rubbery and release is enhanced. We applied this heating system to trigger release of the chemotherapeutic drug doxorubicin from both polymer films and microspheres. Multiple cycles of NIR exposure were performed and demonstrated a triggered and stepwise release behavior. Lastly, we tested the microsphere system in vitro, reporting a ∼90% reduction in the activity of T6-17 cells when the release of doxorubicin was triggered from microspheres exposed to NIR light. This overall approach can be used with numerous polymer systems to modulate molecule release toward the development of unique and clinically applicable therapies.
We introduce a microfluidic approach to generating monodisperse, stable nanoparticle-shelled bubbles using air-in-oil-in-water (A/O/W) compound bubbles as templates. The oil phase of the A/O/W compound bubbles comprises a volatile organic solvent and a hydrophobic silica nanoparticle. Upon evaporation of the organic solvent, the nanoparticles in the oil layer form a stiff shell at the air-water interface, which drastically enhances the stability of the bubbles against dissolution and coarsening. On the basis of this approach, we demonstrate that it is also possible to generate functional bubbles stabilized by composite shells that are composed of mixtures of hydrophobic materials and nanoparticles with unique properties.
The generation of near‐infrared (NIR)‐sensitive microcapsules is presented and it is demonstrated that the release properties of these microcapsules can be tailored by controlling their morphology. A biocompatible polymer, poly(DL‐lactic‐co‐glycolic)acid (PLGA) is used to form hollow microcapsules from monodisperse water‐in‐oil‐in‐water (W/O/W) double emulsions. Both the composition of PLGA and the oil phase of W/O/W double emulsions significantly affect the morphology of the subsequently formed microcapsules. PLGA microcapsules with vastly different morphologies, from spherical to “snowman‐like” capsules, are obtained due to changes in the solvent quality of the oil phase during solvent removal. The adhesiveness of the PLGA‐laden interface plays a critical role in the formation of snowman‐like microcapsules. NIR‐sensitive PLGA microcapsules are designed to have responsive properties by incorporating Au nanorods into the microcapsule shell, which enables the triggered release of encapsulated materials. The effect of capsule morphology on the NIR responsiveness and release properties of PLGA microcapsules is demonstrated.
This paper presents the generation of amphiphilic Janus bubbles and their behavior at an air–water interface. Janus bubbles are generated by selectively depositing gold onto one side of dried nanoparticle‐shelled bubbles. To generate nanoparticle‐shelled bubbles that can withstand drying without significant changes in their structure, it is critical to control the ratio of bubble radius to shell thickness using a microfluidic technique. It is observed that the behavior of Janus bubbles at an air–water interface is very different from that of unmodified nanoparticle‐shelled bubbles. Interfacial assembly of amphiphilic Janus bubbles shows that they interact with one another via long‐ranged attractions. The origin of this long‐ranged attraction is quadrupolar capillary interactions due to the undulation of the three‐phase contact line around the Janus boundary. The interparticle forces between interface‐trapped Janus bubbles are determined using a particle tracking method. The shape of the deformed air–water interface around Janus bubbles is directly observed as well as the orientation of Janus bubbles using a gel‐trapping technique. These observations verify that the air–water interface is pinned around the boundary between the two hemispheres and that the chemical heterogeneity of this boundary leads to irregular contact line around Janus bubbles.
We investigate the mechanical properties of layers of the protein beta-lactoglobulin during their formation at the air-water interface using a combination of passive and active microrheological techniques. The passive microrheology, which employs multiple particle tracking measurements using spherical colloids, indicates that the interfacial rheology evolves over time through three stages as protein adsorbs at the interface: (i) an increase in viscosity, (ii) a period of spatial heterogeneity in which the interface contains elastic and viscous regions, and (iii) the development of a uniformly rigid elastic film. Varying solution pH between pH = 5.2, the isoelectric point of beta-lactoglobulin, and pH = 7.0 has no qualitative effect on this mechanical evolution. The active microrheology, which employs ferromagnetic nanowires rotating in response to magnetic torques, similarly shows an increasing interfacial viscosity at early times and evidence of mechanical heterogeneity at intermediate times. However, at late times, the nanowire mobility becomes strongly pH dependent. For pH = 5.2, the layer responds as a rigid elastic film to the stress imposed by the wire. For pH = 7.0, it displays a viscous response that contrasts with the passive measurements. We associate this contrast with a nonlinear response to the wire at late times that reflects a low yield stress of the film at higher pH. This ability to compare passive and active measurements demonstrates the advantage of applying multiple microrheological methods to resolve ambiguity in any single approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.