BackgroundTo investigate the expression of Matrix Metalloproteinases 2 and aquaporin-1 in corneoscleral junction and explore the mechanism of trabecular damageafter angle-closure.MethodsThirty New Zealand white rabbits were randomly assigned into 2 groups, theexperimental group (Group 1) including twenty five rabbits and the control group (Group 2) including 5 rabbits. The rabbits in the experimental group were used to establish angle-closure models, and the rabbits in the control group were not subjected to any operation. All the rabbits were followed by slit lamp microscopy, Tonopen tonometer, and anterior segment optical coherent tomography (AS-OCT). The expressions of metalloproteinase MMP-2, aquaporin-1, and tissue inhibitors of metalloproteinase-2 in corneoscleral junctionwere evaluatedin both groups byimmunofluorescence, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA).ResultsSlit-lamp examination showed that angle-closure model was successfully established in twenty rabbits. The extent of angle-closure was about 2 to 4 clock hours in all the rabbit models, but the intraocular pressure (IOP) of the rabbits distributed from 8.57 to 15.25 mmHg and no significant high IOP was found in the follow-up period. The AQP-1-positive cells mainly located in Schlemm’s canal, the inner surface of trabecular meshwork (TM), and the surface of iris, which began to decline on 1 month after angle-closure. MMP2 staining was diffuse in trabecular meshwork and iris. Immunofluorescence signal of MMP2 was strong within 1 month after angle-closure, and subsequently became weak. qRT-PCR and ELISA showed that the expression of MMP-2 and TIMP-2 increased within 1 month after angle-closure and then declined gradually. The AQP-1 levels showed slightly declined on 1 month after angle-closure.ConclusionsAltered levels of MMPs, TIMPs, and AQP-1 were found in the area of angle-closure, which may be involved in the damage of TM and Schlemm’s canal after angle-closure.