In order to investigate the tolerance of an anoxic-oxic (A/O) process for the changing of refractory organics in electroplating wastewater, optimize the technological parameters, and reveal the microbial characteristics, a pilot-scale A/O process was carried out and the microbial community composition was analyzed by high-throughput sequencing. The results indicated that a better tolerance was achieved for sodium dodecyl benzene sulfonate, and the removal efficiencies of organic matter, ammonia nitrogen (NH4+-N), and total nitrogen (TN) were 82.87%, 66.47%, and 53.28% with the optimum hydraulic retention time (HRT), internal circulation and dissolved oxygen (DO) was 12 h, 200% and 2–3 mg/L, respectively. Additionally, high-throughput sequencing results demonstrated that Proteobacteria and Bacteroidetes were the dominant bacteria phylum, and the diversity of the microbial community in the stable-state period was richer than that in the start-up period.