2014 10th International Conference on Communications (COMM) 2014
DOI: 10.1109/iccomm.2014.6866686
|View full text |Cite
|
Sign up to set email alerts
|

Combined use of pattern recognition algorithms for keystroke-based continuous authentication system

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2019
2019
2021
2021

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 5 publications
0
3
0
1
Order By: Relevance
“…It simulates the behaviour of a bee colony searching for natural resources. (v) Artificial Neural Network (ANN): this method combines and connects a set of simpler decisionmaking systems, simulating the behavior of neurons, to recognize patterns (R065, [22]; R049, [23]). (vi) State-Space Models: one of the simplest ways to approach a classification problem is to model it as a state diagram (as in the case of R109, [24]).…”
Section: Data Processing Approachesmentioning
confidence: 99%
See 1 more Smart Citation
“…It simulates the behaviour of a bee colony searching for natural resources. (v) Artificial Neural Network (ANN): this method combines and connects a set of simpler decisionmaking systems, simulating the behavior of neurons, to recognize patterns (R065, [22]; R049, [23]). (vi) State-Space Models: one of the simplest ways to approach a classification problem is to model it as a state diagram (as in the case of R109, [24]).…”
Section: Data Processing Approachesmentioning
confidence: 99%
“…(vi) State-Space Models: one of the simplest ways to approach a classification problem is to model it as a state diagram (as in the case of R109, [24]). Examples of other state-space models include decision trees (DT), Random Forests Classifiers (RFC) (R084, [25]), or decision models based on Markov processes, such as Markov Chains or Hidden Markov Models (R049, [23]; R113, [26]). (vii) Other probabilistic models: R084 [25] compares different methods including logistic regression and Bayesian classifiers (Naive Bayes).…”
Section: Data Processing Approachesmentioning
confidence: 99%
“…Методи і алгоритми розпізнавання образів ефективно використовуються для задач обробки даних і прийняття рішень в складних системах, так як не вимагають визначення повної семантики внутрішніх зв'язків та дозволяють здійснювати операції в умовах часткової невизначеності [1][2][3][4]. У випадку неоднорідності даних, коли складна система представляється сукупністю ознак різного характеру інформації (детерміновані, ймовірнісні, логічні, структурні) широкого розповсюдження набули методи комбінованого розпізнавання [5][6][7][8][9].…”
Section: вступunclassified
“…This method ignores the behavioural recognition problems and noisy samples. Popovici et al (2014) provides many solutions to integrate the use of two algorithms. The first depends on multi-layer perceptron (MLP) neural network and the last depends on a trust algorithm.…”
Section: Pros and Consmentioning
confidence: 99%