Photoperiod and thermosensitive genetic male sterile (PTGMS) lines have become one of the main sources of global rice production increasing. This study was conducted to evaluate the fertility alteration and validate the male sterility genes using validation markers in novel Egyptian
Indica
and
Japonica
PTGMS lines under natural conditions. The study revealed that the new genetic male sterile lines belong to the type of photo–thermosensitive genetic male sterility (PTGMS). The fertility alteration of these lines has influenced by photoperiod and temperature interaction. The new PTGMS lines have three sensitive periods of fertility alteration; transformation, sterility, and fertility period. Furthermore, the sensitive stage of fertility transformation might be from secondary branch primordial to pollen mother cells (PMC) meiosis. Under the natural Sakha condition, the new PTGMS lines were stable sterile under the condition of day length upper 13,75 h and temperature over 25 °C, while its convert to fertile under day length under 13 h, and temperature lower than 24 °C. The co-dominant markers identified the
pms3
and
tms5
genes in the new PTGMS lines, indicated that the fertility alteration in these lines controlled by photoperiod and thermosensitive stages.