2014 Brazilian Conference on Intelligent Systems 2014
DOI: 10.1109/bracis.2014.46
|View full text |Cite
|
Sign up to set email alerts
|

Combining Classification and Clustering for Tweet Sentiment Analysis

Abstract: Abstract-The goal of sentiment analysis is to determine opinions, emotions, and attitudes presented in source material. In tweet sentiment analysis, opinions in messages can be typically categorized as positive or negative. To classify them, researchers have been using traditional classifiers like Naive Bayes, Maximum Entropy, and Support Vector Machines (SVM). In this paper, we show that a SVM classifier combined with a cluster ensemble can offer better classification accuracies than a stand-alone SVM. In our… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
20
0
10

Year Published

2017
2017
2023
2023

Publication Types

Select...
4
2
1

Relationship

1
6

Authors

Journals

citations
Cited by 64 publications
(30 citation statements)
references
References 36 publications
0
20
0
10
Order By: Relevance
“…One recent research demonstrated combining classification and clustering algorithms for Tweet Sentiment Analysis using an SVM classifier along with a clustering ensemble to achieve better classification accuracies by espousing a C3E-SL algorithm which refines tweet classifications from additional information provided by clusterers [12].…”
Section: Related Workmentioning
confidence: 99%
“…One recent research demonstrated combining classification and clustering algorithms for Tweet Sentiment Analysis using an SVM classifier along with a clustering ensemble to achieve better classification accuracies by espousing a C3E-SL algorithm which refines tweet classifications from additional information provided by clusterers [12].…”
Section: Related Workmentioning
confidence: 99%
“…O próximo capítulo aborda os principais conceitos sobre meta-heurísticas de busca, as quais são particularmente adequadas para o problema de otimização paramétrica (e.g., otimização de parâmetros em métodos de aprendizado de máquina). Este estudo resultou na concepção de um novo algoritmo evolutivo, o qual tem sido usado para a calibração automática do algoritmo C 3 E-SL (COLETTA et al, 2015a;COLETTA et al, 2014).…”
Section: Considerações Finaisunclassified
“…A abordagem semissupervisionada proposta aqui estende o estudo de Coletta et al (2014), no qual a combinação de classificadores e agrupadores foi usada para classificar tweets de maneira supervisionada. Esta extensão, descrita a partir da Seção 4.1, utiliza o algoritmo C 3 E-SL para combinar máquinas de vetores de suporte (Support Vector Machines -SVMs (CORTES; VAPNIK, 1995; BOSER; GUYON; VAPNIK, 1992)) com a informação de similaridades entre tweets de um conjunto alvo que se deseja classificar.…”
Section: Aprendizado Semissupervisionado Combinando Classificadores Eunclassified
See 2 more Smart Citations