Twitter is a microblogging platform in which users can post status messages, called “tweets,” to their friends. It has provided an enormous dataset of the so-called sentiments, whose classification can take place through supervised learning. To build supervised learning models, classification algorithms require a set of representative labeled data. However, labeled data are usually difficult and expensive to obtain, which motivates the interest in semi-supervised learning. This type of learning uses unlabeled data to complement the information provided by the labeled data in the training process; therefore, it is particularly useful in applications including tweet sentiment analysis, where a huge quantity of unlabeled data is accessible. Semi-supervised learning for tweet sentiment analysis, although appealing, is relatively new. We provide a comprehensive survey of semi-supervised approaches applied to tweet classification. Such approaches consist of graph-based, wrapper-based, and topic-based methods. A comparative study of algorithms based on self-training, co-training, topic modeling, and distant supervision highlights their biases and sheds light on aspects that the practitioner should consider in real-world applications.
Abstract-The goal of sentiment analysis is to determine opinions, emotions, and attitudes presented in source material. In tweet sentiment analysis, opinions in messages can be typically categorized as positive or negative. To classify them, researchers have been using traditional classifiers like Naive Bayes, Maximum Entropy, and Support Vector Machines (SVM). In this paper, we show that a SVM classifier combined with a cluster ensemble can offer better classification accuracies than a stand-alone SVM. In our study, we employed an algorithm, named C 3 E-SL, capable to combine classifier and cluster ensembles. This algorithm can refine tweet classifications from additional information provided by clusterers, assuming that similar instances from the same clusters are more likely to share the same class label. The resulting classifier has shown to be competitive with the best results found so far in the literature, thereby suggesting that the studied approach is promising for tweet sentiment classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.