Steady increase in overexploitation of stone quarries, generation of construction and demolition waste, and costs of preparing extra landfill space have become environmental and waste management challenges in metropolises. In this paper, aggregate production is studied in two scenarios: scenario 1 representing the production of natural aggregates (NA) and scenario 2 representing the production of recycled aggregates (RA). This study consists of two parts. In the first part, the objective is the environmental assessment (energy consumption and CO 2 emission) and economic (cost) evaluation of these two scenarios, which is pursued by life-cycle assessment (LCA) method. In the second part, the results of the first part are used to estimate the optimal combination of production of NA and RA and thereby find an optimal solution (scenario) for a more eco-friendly aggregate production. The defined formulas and relationship are used to develop a model. The results of model validation show that the optimal ratio, in optimal scenario, is 50%. The results show that, compared to scenario 1, optimal scenario improves the energy consumption, CO 2 emissions, and production cost by, respectively, 30%, 36%, and 31%, which demonstrate the effectiveness of this optimization.