“…An explosion of interest has surrounded applying machine learning (ML) methods to quantum chemistry with a plethora of interesting application areas such as learning interatomic potentials (Behler & Parrinello, 2007;Unke et al, 2021c;Bartók et al, 2010;Smith et al, 2017;Chmiela et al, 2017;2018;Schütt et al, 2018;Unke & Meuwly, 2019;Unke et al, 2021b;Batzner et al, 2021;Klicpera et al, 2020;Liu et al, 2021a;Schütt et al, 2021), constructing density functionals (Snyder et al, 2012;Brockherde et al, 2017;Ryczko et al, 2019;Kalita et al, 2021;Li et al, 2021), predicting spectroscopic properties (Gastegger et al, 2017;Westermayr & Marquetand, 2020), optoelectronic properties (Lee et al, 2021;Mazouin et al, 2021;Lu et al, 2020;Gladkikh et al, 2020), activation energies (Lewis-Atwell et al, 2021;Grambow et al, 2020), and a variety of physical properties throughout chemical compound space (Montavon et al, 2013;De et al, 2016;von Lilienfeld et al, 2020;Keith et al, 2021;Liu et al, 2021b;Tielker et al, 2021;Bratholm et al, 2021). Quantum chemistry workflows can obtain such chemical and physical information by modelling the electronic Schrodinger equation in a chosen basis set of localized atomic orbitals that is then used to derive the ground-state molecular wavefunction.…”