Sentiment analysis has become a powerful tool in processing and analysing expressed opinions on a large scale. While the application of sentiment analysis on English-language content has been widely examined, the applications on the Russian language remains not as well-studied. In this survey, we comprehensively reviewed the applications of sentiment analysis of Russian-language content and identified current challenges and future research directions. In contrast with previous surveys, we targeted the applications of sentiment analysis rather than existing sentiment analysis approaches and their classification quality. We synthesised and systematically characterised existing applied sentiment analysis studies by their source of analysed data, purpose, employed sentiment analysis approach, and primary outcomes and limitations. We presented a research agenda to improve the quality of the applied sentiment analysis studies and to expand the existing research base to new directions. Additionally, to help scholars selecting an appropriate training dataset, we performed an additional literature review and identified publicly available sentiment datasets of Russian-language texts. INDEX TERMS Classification, machine learning, computational linguistics, sentiment analysis, applications of sentiment analysis, Russian-language texts, public opinion.