This paper describes a new shared task for humor understanding that attempts to eschew the ubiquitous binary approach to humor detection and focus on comparative humor ranking instead. The task is based on a new dataset of funny tweets posted in response to shared hashtags, collected from the 'Hashtag Wars' segment of the TV show @midnight. The results are evaluated in two subtasks that require the participants to generate either the correct pairwise comparisons of tweets (subtask A), or the correct ranking of the tweets (subtask B) in terms of how funny they are. 7 teams participated in subtask A, and 5 teams participated in subtask B. The best accuracy in subtask A was 0.675. The best (lowest) rank edit distance for subtask B was 0.872.
This paper demonstrates the effectiveness of a Long Short-Term Memory language model in our initial efforts to generate unconstrained rap lyrics. The goal of this model is to generate lyrics that are similar in style to that of a given rapper, but not identical to existing lyrics: this is the task of ghostwriting. Unlike previous work, which defines explicit templates for lyric generation, our model defines its own rhyme scheme, line length, and verse length. Our experiments show that a Long Short-Term Memory language model produces better "ghostwritten" lyrics than a baseline model.
In order to determine argument structure in text, one must understand how individual components of the overall argument are linked. This work presents the first neural network-based approach to link extraction in argument mining. Specifically, we propose a novel architecture that applies Pointer Network sequence-tosequence attention modeling to structural prediction in discourse parsing tasks. We then develop a joint model that extends this architecture to simultaneously address the link extraction task and the classification of argument components. The proposed joint model achieves state-of-the-art results on two separate evaluation corpora, showing far superior performance than the previously proposed corpus-specific and heavily feature-engineered models. Furthermore, our results demonstrate that jointly optimizing for both tasks is crucial for high performance.
Article 5(1)(c) of the European Union's General Data Protection Regulation (GDPR) requires that "personal data shall be [...] adequate, relevant, and limited to what is necessary in relation to the purposes for which they are processed ('data minimisation')". To date, the legal and computational definitions of 'purpose limitation' and 'data minimization' remain largely unclear. In particular, the interpretation of these principles is an open issue for information access systems that optimize for user experience through personalization and do not strictly require personal data collection for the delivery of basic service.In this paper, we identify a lack of a homogeneous interpretation of the data minimization principle and explore two operational definitions applicable in the context of personalization. The focus of our empirical study in the domain of recommender systems is on providing foundational insights about the (i) feasibility of different data minimization definitions, (ii) robustness of different recommendation algorithms to minimization, and (iii) performance of different minimization strategies.We find that the performance decrease incurred by data minimization might not be substantial, but that it might disparately impact different users-a finding which has implications for the viability of different formal minimization definitions. Overall, our analysis uncovers the complexities of the data minimization problem in the context of personalization and maps the remaining computational and regulatory challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.