Many existing deep learning models for natural language processing tasks focus on learning the compositionality of their inputs, which requires many expensive computations. We present a simple deep neural network that competes with and, in some cases, outperforms such models on sentiment analysis and factoid question answering tasks while taking only a fraction of the training time. While our model is syntactically-ignorant, we show significant improvements over previous bag-of-words models by deepening our network and applying a novel variant of dropout. Moreover, our model performs better than syntactic models on datasets with high syntactic variance. We show that our model makes similar errors to syntactically-aware models, indicating that for the tasks we consider, nonlinearly transforming the input is more important than tailoring a network to incorporate word order and syntax.
The potential for machine learning (ML) systems to amplify social inequities and unfairness is receiving increasing popular and academic attention. A surge of recent work has focused on the development of algorithmic tools to assess and mitigate such unfairness. If these tools are to have a positive impact on industry practice, however, it is crucial that their design be informed by an understanding of realworld needs. Through 35 semi-structured interviews and an anonymous survey of 267 ML practitioners, we conduct the first systematic investigation of commercial product teams' challenges and needs for support in developing fairer ML systems. We identify areas of alignment and disconnect between the challenges faced by teams in practice and the solutions proposed in the fair ML research literature. Based on these findings, we highlight directions for future ML and HCI research that will better address practitioners' needs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.