2019
DOI: 10.1145/3287763
|View full text |Cite
|
Sign up to set email alerts
|

Combining Similarity Features and Deep Representation Learning for Stance Detection in the Context of Checking Fake News

Abstract: Fake news are nowadays an issue of pressing concern, given their recent rise as a potential threat to high-quality journalism and well-informed public discourse. The Fake News Challenge (FNC-1) was organized in early 2017 to encourage the development of machine learning-based classification systems for stance detection (i.e., for identifying whether a particular news article agrees, disagrees, discusses, or is unrelated to a particular news headline), thus helping in the detection and analysis of possible inst… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
39
0
2

Year Published

2019
2019
2021
2021

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 61 publications
(41 citation statements)
references
References 37 publications
0
39
0
2
Order By: Relevance
“…In [12], a deep learning method is used for addressing the stance detection problem from the FNC-1 task. It incorporates bi-directional RNNs together with max-pooling and neural attention mechanisms to build representations from headlines and from the body of news articles and combine these representations with external similarity features.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…In [12], a deep learning method is used for addressing the stance detection problem from the FNC-1 task. It incorporates bi-directional RNNs together with max-pooling and neural attention mechanisms to build representations from headlines and from the body of news articles and combine these representations with external similarity features.…”
Section: Related Workmentioning
confidence: 99%
“…As manual fact checking is a very tedious task, automat- VOLUME 4, 2016 ically identification of fake news has drawn considerable attention in the Natural Language Processing (NLP) community to help alleviate the burdensome and time-consuming human activity of fact checking [10], [11]. Despite that, the task of evaluating the authenticity of news remains very complex even for automated systems [12]. Identifying fake news articles by understanding what other news organizations are reporting about the same topic could be a valuable first step.…”
Section: Introductionmentioning
confidence: 99%
“…En los últimos años, las noticias falsas se han convertido en un tema que amenaza el discurso público, la sociedad humana y la democracia (Borges, Martins y Calado, 2019;Mackenzie y Bhatt, 2018;Qayyum et al, 2019). En un escenario donde el caos reina en gran parte del ecosistema de información del que dependen las sociedades (Lin, 2019), la información falsa se propaga rápidamente a través de las redes sociales, donde puede impactar a millones de usuarios (Figueira y Oliveira, 2017).…”
Section: Marco Teóricounclassified
“…Este aumento en la popularidad del vídeo destaca la necesidad de herramientas para confirmar la autenticidad del contenido de los medios y las noticias, ya que las nuevas tecnologías permiten manipulaciones convincentes de vídeos o audios (Anderson, 2018). Dada la facilidad para obtener y difundir información errónea a través de las plataformas de redes sociales, tanto en forma de publicación como en los comentarios (Atasanova et al, 2019), cada vez es más difícil saber en qué confiar, lo que genera consecuencias perjudiciales para la toma de decisiones informadas (Borges et al, 2019;Britt et al, 2019). De hecho, hoy vivimos en lo que algunos autores identifican como un escenario de posverdad, que se caracteriza por la desinformación digital, el sesgo mediático (Hamborg et al, 2018), la generación de información falsa y la distorsión deliberada de la realidad, para manipular creencias y emociones e influir en la opinión pública y en actitudes sociales (Anderson, 2018;Qayyum et al, 2019).…”
Section: Marco Teóricounclassified
“…The deepfake technology can realize the tampering, forgery and automatic generation of images, sounds and videos, and produce highly realistic and difficult to distinguish effects. Fake information has become a serious threat to the public news, democracy and human society [1]. The most popular product of deepfake is AI face changing technology, such as Face2Face.…”
Section: Introductionmentioning
confidence: 99%