Cardiovascular disease is a substantial cause of mortality and morbidity in the world. In clinical data analytics, it is a great challenge to predict heart disease survivor. Data mining transforms huge amounts of raw data generated by the health industry into useful information that can help in making informed decisions. Various studies proved that significant features play a key role in improving performance of machine learning models. This study analyzes the heart failure survivors from the dataset of 299 patients admitted in hospital. The aim is to find significant features and effective data mining techniques that can boost the accuracy of cardiovascular patient's survivor prediction. To predict patient's survival, this study applies nine classification models: Decision Tree (DT), Adaptive boosting classifier (AdaBoost), Logistic Regression (LR), Stochastic Gradient classifier (SGD), Random Forest (RF), Gradient Boosting classifier (GBM), Extra Tree Classifier (ETC), Gaussian Naive Bayes classifier (G-NB) and Support Vector Machine (SVM). The imbalance class problem is handled by Synthetic Minority Oversampling Technique (SMOTE). Furthermore, machine learning models are trained on the highest ranked features selected by RF. The results are compared with those provided by machine learning algorithms using full set of features. Experimental results demonstrate that ETC outperforms other models and achieves 0.9262 accuracy value with SMOTE in prediction of heart patient's survival.
Society and individuals are negatively influenced both politically and socially by the widespread increase of fake news either way generated by humans or machines. In the era of social networks, the quick rotation of news makes it challenging to evaluate its reliability promptly. Therefore, automated fake news detection tools have become a crucial requirement. To address the aforementioned issue, a hybrid Neural Network architecture, that combines the capabilities of CNN and LSTM, is used with two different dimensionality reduction approaches, Principle Component Analysis (PCA) and Chi-Square. This work proposed to employ the dimensionality reduction techniques to reduce the dimensionality of the feature vectors before passing them to the classifier. To develop the reasoning, this work acquired a dataset from the Fake News Challenges (FNC) website which has four types of stances: agree, disagree, discuss, and unrelated. The nonlinear features are fed to PCA and chi-square which provides more contextual features for fake news detection. The motivation of this research is to determine the relative stance of a news article towards its headline. The proposed model improves results by ∼ 4% and ∼ 20% in terms of Accuracy and F 1 − score. The experimental results show that PCA outperforms than Chi-square and state-of-the-art methods with 97.8% accuracy.
COVID-19 pandemic is widely spreading over the entire world and has established significant community spread. Fostering a prediction system can help prepare the officials to respond properly and quickly. Medical imaging like X-ray and computed tomography (CT) can play an important role in the early prediction of COVID-19 patients that will help the timely treatment of the patients. The x-ray images from COVID-19 patients reveal the pneumonia infections that can be used to identify the patients of COVID-19. This study presents the use of Convolutional Neural Network (CNN) that extracts the features from chest x-ray images for the prediction. Three filters are applied to get the edges from the images that help to get the desired segmented target with the infected area of the x-ray. To cope with the smaller size of the training dataset, Keras' ImageDa-taGenerator class is used to generate ten thousand augmented images. Classification is performed with two, three, and four classes where the four-class problem has X-ray images from COVID-19, normal people, virus pneumonia, and bacterial pneumonia. Results demonstrate that the proposed CNN model can predict COVID-19 patients with high accuracy. It can help automate screening of the patients for COVID-19 with minimal contact, especially areas where the influx of patients can not be treated by the available medical staff. The performance comparison of the proposed approach with VGG16 and AlexNet shows that classification results for two and four classes are competitive and identical for three-class classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.