Cardiovascular disease is a substantial cause of mortality and morbidity in the world. In clinical data analytics, it is a great challenge to predict heart disease survivor. Data mining transforms huge amounts of raw data generated by the health industry into useful information that can help in making informed decisions. Various studies proved that significant features play a key role in improving performance of machine learning models. This study analyzes the heart failure survivors from the dataset of 299 patients admitted in hospital. The aim is to find significant features and effective data mining techniques that can boost the accuracy of cardiovascular patient's survivor prediction. To predict patient's survival, this study applies nine classification models: Decision Tree (DT), Adaptive boosting classifier (AdaBoost), Logistic Regression (LR), Stochastic Gradient classifier (SGD), Random Forest (RF), Gradient Boosting classifier (GBM), Extra Tree Classifier (ETC), Gaussian Naive Bayes classifier (G-NB) and Support Vector Machine (SVM). The imbalance class problem is handled by Synthetic Minority Oversampling Technique (SMOTE). Furthermore, machine learning models are trained on the highest ranked features selected by RF. The results are compared with those provided by machine learning algorithms using full set of features. Experimental results demonstrate that ETC outperforms other models and achieves 0.9262 accuracy value with SMOTE in prediction of heart patient's survival.
Face recognition has made significant advances in the last decade, but robust commercial applications are still lacking. Current authentication/identification applications are limited to controlled settings, e.g., limited pose and illumination changes, with the user usually aware of being screened and collaborating in the process. Among others, pose and illumination changes are limited. To address challenges from looser restrictions, this paper proposes a novel framework for real-world face recognition in uncontrolled settings named Face Analysis for Commercial Entities (FACE). Its robustness comes from normalization (“correction”) strategies to address pose and illumination variations. In addition, two separate image quality indices quantitatively assess pose and illumination changes for each biometric query, before submitting it to the classifier. Samples with poor quality are possibly discarded or undergo a manual classification or, when possible, trigger a new capture. After such filter, template similarity for matching purposes is measured using a localized version of the image correlation index. Finally, FACE adopts reliability indices, which estimate the “acceptability” of the final identification decision made by the classifier. Experimental results show that the accuracy of FACE (in terms of recognition rate) compares favorably, and in some cases by significant margins, against popular face recognition methods. In particular, FACE is compared against SVM, incremental SVM, principal component analysis, incremental LDA, ICA, and hierarchical multiscale local binary pattern. Testing exploits data from different data sets: CelebrityDB, Labeled Faces in the Wild, SCface, and FERET. The face images used present variations in pose, expression, illumination, image quality, and resolution. Our experiments show the benefits of using image quality and reliability indices to enhance overall accuracy, on one side, and to provide for indi- idualized processing of biometric probes for better decision-making purposes, on the other side. Both kinds of indices, owing to the way they are defined, can be easily integrated within different frameworks and off-the-shelf biometric applications for the following: 1) data fusion; 2) online identity management; and 3) interoperability. The results obtained by FACE witness a significant increase in accuracy when compared with the results produced by the other algorithms considered
Face recognition provides many advantages compared with other available biometrics, but it is particularly subject to spoofing. The most accurate methods in literature addressing this problem, rely on the estimation of the three-dimensionality of faces, which heavily increase the whole cost of the system. This paper proposes an effective and efficient solution to problem of face spoofing. Starting from a set of automatically located facial points, we exploit geometric invariants for detecting replay attacks. The presented results demonstrate the effectiveness and efficiency of the proposed indices
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.