The response of a model microelectrochemical system to a time-dependent applied voltage is analyzed. The article begins with a fresh historical review including electrochemistry, colloidal science, and microfluidics. The model problem consists of a symmetric binary electrolyte between parallel-plate blocking electrodes, which suddenly apply a voltage. Compact Stern layers on the electrodes are also taken into account. The Nernst-Planck-Poisson equations are first linearized and solved by Laplace transforms for small voltages, and numerical solutions are obtained for large voltages. The "weakly nonlinear" limit of thin double layers is then analyzed by matched asymptotic expansions in the small parameter epsilon= lambdaD/L, where lambdaD is the screening length and L the electrode separation. At leading order, the system initially behaves like an RC circuit with a response time of lambdaDL/D (not lambdaD2/D), where D is the ionic diffusivity, but nonlinearity violates this common picture and introduces multiple time scales. The charging process slows down, and neutral-salt adsorption by the diffuse part of the double layer couples to bulk diffusion at the time scale, L2/D. In the "strongly nonlinear" regime (controlled by a dimensionless parameter resembling the Dukhin number), this effect produces bulk concentration gradients, and, at very large voltages, transient space charge. The article concludes with an overview of more general situations involving surface conduction, multicomponent electrolytes, and Faradaic processes.