Background:
Recent years have seen a rise in the diversity and use of synthetic cannabinoids. The present study evaluated the behavioral effects of the third-generation indazole-3-carboxamide-type synthetic cannabinoid, AB-FUBINACA.
Methods:
Adult male and female C57BL/6J mice were treated with AB-FUBINACA (0–3 mg/kg, i.p.) and tested repeatedly in the tetrad battery measuring catalepsy, antinociception, hypothermia, and locomotor activity. Mice treated with AB-FUBINACA (≥2 mg/kg, i.p.) displayed classic cannabinoid effects in the tetrad that were blocked by the CB
1
receptor selective antagonist rimonabant. To address tolerance and withdrawal effects, a second group of mice was injected with AB-FUBINACA (3 mg/kg, s.c.) or vehicle consisting of 5% ethanol, 5% Kolliphor EL, and 90 % saline every 12 h and tested daily in modified tetrad over the course of 5 days. On the 6th day, withdrawal was precipitated using rimonabant (3 mg/kg, s.c.), and somatic signs of withdrawal (i.e., head twitches and paw tremors) were quantified.
Results:
Although mice did not develop tolerance to AB-FUBINACA or cross-tolerance to Δ
9
-tetrahydrocannabinol (THC; 50 mg/kg, i.p.), somatic precipitated withdrawal signs were observed. Repeated tetrad testing up to 48 h post injection indicated that AB-FUBINACA effects are relatively short-lived, as compared with THC. Brain levels of AB-FUBINACA, as quantified by UHPLC-MS/MS, were undetectable 4 h post injection.
Conclusions:
These data indicate that the cannabinoid effects of AB-FUBINACA are relatively short-lived, yet sufficient to induce dependence in mice.