The ability of individual G protein-coupled receptors (GPCR) to engage multiple signaling pathways opens opportunities for the development of better drugs. This requires new knowledge and tools to determine the G protein subtypes and arrestins engaged by a given receptor. Here, we used a new BRET-based effector membrane translocation assay (EMTA) that monitors activation of each Gα protein through the recruitment of selective G protein effectors and βarrestins to the plasma membrane. Profiling of 100 therapeutically relevant GPCR revealed a great diversity of coupling profiles with some receptors displaying exquisite selectivity, whereas others promiscuitely engage all four G protein families. Comparison with existing datasets points to commonalities but also to critical differences between studies.Combining a biosensor subset allowed detecting activity of nearly all GPCR thus providing a new tool for safety screens and systems pharmacology. Overall, this work describes unique resources for studying GPCR function and drug discovery.
KEYWORDSG protein-coupled receptor (GPCR), enhanced bystander bioluminescence resonance energy transfer (ebBRET), Biosensor, Effector membrane translocation assay (EMTA), Highthroughput assay, G protein activation, Functional selectivity, Systems pharmacology.