We report on the temperature, pressure, and time (T, p, and t)-dependent features of thermal conductivity, κ, of partially ordered, non-equilibrium state of C60-OG, the orientational glass of Buckminsterfullerene (at T below the orientational freezing temperature Tog) made more unstable (i) by partially depressurizing its high-p formed state to elastically expand it and (ii) by further pressurizing that state to elastically contract it. The sub-Tog effects observed on heating of C60-OG differ from those of glasses because phonon propagation depends on the ratio of two well-defined orientational states of C60 molecules and the density of the solid. A broad peak-like feature appears at T near Tog in the κ-T plots of C60-OG formed at 0.7 GPa, depressurized to 0.2 GPa and heated at 0.2 GPa, which we attribute to partial overlap of the sub-Tog and Tog features. A sub-Tog local minimum appears in the κ-T plots at T well below Tog of C60-OG formed at 0.1 GPa, pressurized to 0.5 GPa and heated at 0.5 GPa and it corresponds to the state of maximum disorder. Although Buckminsterfullerene is regarded as an orientationally disordered crystal, variation of its properties with T and p is qualitatively different from other such crystals. We discuss the findings in terms of the nature of its disorder, sensitivity of its rotational dynamics to temperature, and the absence of the Johari-Goldstein relaxation. All seem to affect the phenomenology of its glass-like transition.