Bulk and interfacial properties of decane in the presence of carbon dioxide, methane, and their mixture nilesh choudhary, Arun Kumar narayanan nair * , Mohd fuad Anwari che Ruslan & Shuyu Sun * Molecular dynamics simulations were performed to study the bulk and interfacial properties of methane + n-decane, carbon dioxide + n-decane, and methane + carbon dioxide + n-decane systems under geological conditions. in addition, theoretical calculations using the predictive peng-Robinson equation of state and density gradient theory are carried out to compare with the simulation data.A key finding is the preferential dissolution in the decane-rich phase and adsorption at the interface for carbon dioxide from the methane/carbon dioxide mixture. in general, both the gas solubility and the swelling factor increase with increasing pressure and decreasing temperature. interestingly, the methane solubility and the swelling of the methane + n-decane system are not strongly influenced by temperature. our results also show that the presence of methane increases the interfacial tension (ift) of the carbon dioxide + n-decane system. typically, the ift of the studied systems decreases with increasing pressure and temperature. the relatively higher surface excess of the carbon dioxide + n-decane system results in a steeper decrease in its ift as a function of pressure. Such systematic investigations may help to understand the behavior of the carbon dioxide-oil system in the presence of impurities such as methane for the design and operation of carbon capture and storage and enhanced oil recovery processes.