Male rat pups were administered 6-hydroxydopamine (6-OHDA, 75 microg, intracisternally, 30 min after desipramine, 25 mg/kg, s.c.) on Days 1 or 2 after birth, or were sham-operated (receiving vehicle). In four experiments, the acute effects of apomorphine, with or without pretreatment with MK-801 (0.03 mg/kg), upon motor activity in test chambers was measured. Acute treatment with apomorphine (0.1 mg/kg) increased locomotor, rearing and total activity markedly compared to both the acute saline administered 6-OHDA rats and the sham-operated rats administered saline. Acute MK-801 (0.03 mg/kg) co-administered shortly before (5 min) apomorphine (0.3 or 1.0 mg/kg) reduced markedly locomotion and total activity in 6-OHDA-treated and sham-operated rats. Rearing behaviour was increased in both the 6-OHDA groups of rats. Acute MK-801 increased activity in the 6-OHDA-treated rats, which was not observed in sham-operated rats. At the 0.3 and 1.0 mg/kg doses of apomorphine, neonatal 6-OHDA treatment increased all three parameters of motor activity. Acute treatment with apomorphine (0.1 mg/kg) induced different effects on the motor activity of 6-OHDA-treated and sham-operated mice. In sham-operated rats apomorphine reduced motor activity during the 1st 30-min period but increased locomotion and total activity, but not rearing, during the 2nd and 3rd periods, whereas in 6-OHDA-treated rats, apomorphine increased locomotor, rearing and total activity markedly. Dopamine loss and serotonin elevation in the striatum and olfactory tubercle were confirmed. The present findings confirm the influence of non-competitive glutamate antagonists in attenuating the behavioural supersensitivity to dopamine antagonists.