Modern SRAM-based Field Programmable Gate Arrays (FPGAs) are increasingly employed in safety-and missioncritical applications. However, the aggressive technology scaling is highlighting the increasing sensitivity of such devices to Single Event Upsets (SEUs) caused by external radiation events. Assessing the reliability of FPGA-based systems in the early design stages is of upmost importance, allowing design exploration of different protection alternatives.This paper presents a Dynamic Partial Reconfiguration-based fault injection methodology implemented by an integrated infrastructure for SEUs emulation in the configuration memory of Xilinx SRAM-based FPGAs. The proposed methodology exploits the Xilinx Essential Bits technology to extremely speed-up fault injection, ensuring correct operations of the fault injection infrastructure during the whole injection process.