Abstract:A low-voltage-tunable one-dimensional nanobeam laser is realized by employing lithographically defined lateral electrodes. An InGaAsP nanobeam with a sub-micrometer width is transfer-printed in the middle of two electrodes using a polydimethylsiloxane stamp. Spectral tuning is achieved by controlling the molecular alignment of the surrounding liquid crystals (LCs). From μm-scale-gap structures, a total wavelength shift that exceed 6 nm is observed at a low voltage of less than 10 V. A measured spectral tuning rate of 0.87 nm/V, which is the largest value ever reported to our knowledge among LC-tuned photonic crystal lasers, was also noted. Lehman, "Tunable two-dimensional photonic crystals using liquid-crystal infiltration," Phys. Rev. B 61(4), R2389-R2392 (2000). 17. Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, "Tunable photonic crystals fabricated in III-V semiconductor slab waveguides using infiltrated liquid crystals," Appl. Phys. Lett. 82(17), 2767-2769 (2003). 18. A. Casas Bedoya, S. Mahmoodian, C. Monat, S. Tomljenovic-Hanic, C. Grillet, P. Domachuk, E. C. Mägi, B. J.Eggleton, and R. W. van der Heijden, "Liquid crystal dynamics in a photonic crystal cavity created by selective microfluidic infiltration," Opt. Express 18(26), 27280-27290 (2010