Replication-competent, attenuated herpes simplex viruses (HSV) have been demonstrated to be effective oncolytic agents in a variety of malignant tumors. Cytokine gene transfer has also been used as immunomodulatory therapy for cancer. To test the utility of combining these two approaches, two oncolytic HSV vectors (NV1034 and NV1042) were designed to express the murine GM-CSF and murine IL-12 genes, respectively. These cytokine-carrying variants were compared with the analogous non-cytokine-carrying control virus (NV1023) in the treatment of murine SCC VII squamous cell carcinoma. All three viruses demonstrated similar infection efficiency, viral replication, and cytotoxicity in vitro. SCC VII cells infected by NV1034 and NV1042 effectively produced GM-CSF and IL-12, respectively. In an SCC VII subcutaneous flank tumor model in immunocompetent C3H/HeJ mice, intratumoral injection with each virus caused a significant reduction in tumor volume compared with saline injections. The NV1042-treated tumors showed a striking reduction in tumor volume compared with the NV1023- and NV1034-treated tumors. On subsequent rechallenge in the contralateral flank with SCC VII cells, 57% of animals treated with NV1042 failed to develop tumors, in comparison with 14% of animals treated with NV1023 or NV1034, and 0% of naive animals. The increased antitumor efficacy seen with NV1042 in comparison with NV1023 and NV1034 was abrogated by CD4(+) and CD8(+) lymphocyte depletion. NV1042 is a novel, attenuated, oncolytic herpesvirus that effectively expresses IL-12 and elicits a T lymphocyte-mediated antitumor immune response against murine squamous cell carcinoma. Such combined oncolytic and immunomodulatory strategies hold promise in the treatment of cancer.
To improve light extraction from organic light-emitting diodes ͑OLEDs͒, we introduced a photonic crystal pattern into the glass substrate of an OLED. The periodic modulation converts the guided waves in the high-refractive-index indium-tin-oxide/organic layers into external leaky waves. We used the finite-difference time-domain method to optimize the structural parameters of the photonic crystal pattern and to analyze the microcavity effect by the metallic cathode of the OLED. With the use of an optimized photonic crystal pattern, an increase of over 80% in the extraction efficiency of the OLED is expected theoretically. An increase in the extraction efficiency of over 50% was achieved experimentally, without detriment to the crucial electrical properties of the OLED.
Despite the weakness of this nonrandomized trial and the differences in T classification, TORS seemed to have distinct advantages over conventional transoral surgery and other conventional open surgery, but further studies are needed.
We report that > 80% of the photons generated inside a photonic crystal slab resonator can be funneled within a small divergence angle of ±30• . The far-field radiation properties of a photonic crystal slab resonant mode are modified by tuning the cavity geometry and by placing a reflector below the cavity. The former method directly shapes the near-field distribution so as to achieve directional and linearly-polarized far-field patterns. The latter modification takes advantage of the interference effect between the original waves and the reflected waves to enhance the energydirectionality. We find that, regardless of the slab thickness, the optimum distance between the slab and the reflector closely equals one wavelength of the resonance under consideration. We have also discussed an efficient far-field simulation algorithm based on the finite-difference time-domain method and the near-to far-field transformation.
The nanopillar photonic-crystal cavities are arranged in arrays with varying pitch and diameter in order to fine tune the resonant wavelength and Q factor. Each array contains 4 rows and 6 columns of devices. In each row, the radius is varied between 0.15·a and 0.2·a (where a is the inter-pillar pitch). In each column, the inter-pillar pitch is varied between 324 nm and 342 nm. This variation in pitch corresponds to resonant wavelengths between 950 nm and 1000 nm according to the normalized frequency calculated from FDTD simulations (λ = a/ω n , where ω n = 0.342). Fig. S2 shows a dark-field optical microscope image at 50× magnification of an array in PDMS with the inset showing a single device at 150× magnification. Additional rows for other experiments (labeled A) are visible but not reported on in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.