2010
DOI: 10.24033/bsmf.2591
|View full text |Cite
|
Sign up to set email alerts
|

Compactification de variétés de Siegel aux places de mauvaise réduction

Abstract: Résumé. -Nous construisons des compactifications toroïdales arithmétiques du champ de modules des variétés abéliennes principalement polarisées munies d'une structure de niveau parahorique. Pour ce faire, nous étendons la méthode de Faltings et Chai [7] à un cas de mauvaise réduction. Le voisinage du bord des compactifications obtenues n'est pas lisse, mais a pour singularités celles des champs de modules de variétés abéliennes avec structure parahorique de genre plus petit. Nous sommes amenés à reprendre la c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
25
0
2

Year Published

2010
2010
2018
2018

Publication Types

Select...
7

Relationship

3
4

Authors

Journals

citations
Cited by 18 publications
(27 citation statements)
references
References 3 publications
0
25
0
2
Order By: Relevance
“…In fact, these integral models with Iwahoric and pro-p-Iwahoric levels at p have been shown to be normal and Cohen-Macaulay. If we use the constructions in this article instead, then we obtain the same (projective normal) minimal compactifications as in [56] and [57], and sufficiently many (but not all) normal and Cohen-Macaulay toroidal compactifications as in [55] and [57], which admit stratifications and formal local descriptions compatible with those in [10] and [30] in characteristic zero. REMARK 16.5.…”
Section: Semiabelian Extensions Of Tautological Objectsmentioning
confidence: 99%
See 1 more Smart Citation
“…In fact, these integral models with Iwahoric and pro-p-Iwahoric levels at p have been shown to be normal and Cohen-Macaulay. If we use the constructions in this article instead, then we obtain the same (projective normal) minimal compactifications as in [56] and [57], and sufficiently many (but not all) normal and Cohen-Macaulay toroidal compactifications as in [55] and [57], which admit stratifications and formal local descriptions compatible with those in [10] and [30] in characteristic zero. REMARK 16.5.…”
Section: Semiabelian Extensions Of Tautological Objectsmentioning
confidence: 99%
“…REMARK 16.4. The toroidal and minimal compactifications constructed in [55] and [56] are for the Siegel moduli with parahoric levels at p defined by linear algebraic data that are otherwise split, in which case the naive moduli problems as in Example 13.12 are not naive and define good integral models. The constructions rely crucially on the assertion that the integral models (before compactification) are normal, which is shown there using results of [44] and [12].…”
Section: Semiabelian Extensions Of Tautological Objectsmentioning
confidence: 99%
“…In this section we prove Theorem A of the introduction. The proof uses the same machinery as [10,22,32], and we omit those details that are adequately documented in the literature. We use the following notation throughout Section 2.…”
Section: Integral Models Of Unitary Shimura Varietiesmentioning
confidence: 99%
“…L'ingrédient principal de la démonstration du théorème est la construction de compactifications toroïdales de A g,0 [12].…”
Section: Compactification Minimale Et Mauvaise Réduction Par Benoît Sunclassified
“…Dans la première partie, nous expliquons comment déduire l'existence de compactifications toroïdales de A g,n,0 des résultats de [12].…”
Section: Plan De L'articleunclassified