Dans cet article, on montre comment les idées introduites dans l'article [S4] s'appliquentà l'étude de la cohomologie cohérente des variétés de Siegel, et plus généralement des variétés de Shimura de type Hodge. Le résultat principal affirme que les classes de cohomologie cohérente supérieure sont des limites p-adique de formes modulaires cuspidales. Ceci permet dans certains cas d'associer des représentations Galoisiennesà des formes automorphes apparaissant dans la cohomologie cohérente.
We show that the automorphic étale cohomology of a (possibly noncompact) PEL-type or Hodge-type Shimura variety in characteristic zero is canonically isomorphic to the cohomology of the associated nearby cycles over most of their mixed characteristics models constructed in the literature.
Résumé. -Nous construisons des compactifications toroïdales arithmétiques du champ de modules des variétés abéliennes principalement polarisées munies d'une structure de niveau parahorique. Pour ce faire, nous étendons la méthode de Faltings et Chai [7] à un cas de mauvaise réduction. Le voisinage du bord des compactifications obtenues n'est pas lisse, mais a pour singularités celles des champs de modules de variétés abéliennes avec structure parahorique de genre plus petit. Nous sommes amenés à reprendre la construction des compactifications sans niveau de Faltings et Chai, en modifiant l'étape d'approximation pour préserver le groupe de p-torsion des variétés abéliennes. Nous donnons comme application une nouvelle preuve de l'existence du sous-groupe canonique pour des familles de variétés abéliennes.
Abstract (Compactification of Siegel modular varieties with bad reduction)We construct arithmetic toroidal compactifications of the moduli stack of principally polarized abelian varieties with parahoric level structure. To this end, we extend the methods of Faltings and Chai [7] to a case of bad reduction. Our compactifications are not smooth near the boundary; the singularities are those of the moduli stacks of abelian varieties with parahoric level structure of lower genus. We modify Faltings and Chai's construction of compactifications without level structure. The key point is that our approximation preserves the p-torsion subgroup of the abelian varieties. As an application, we give a new proof of the existence of the canonical subgroup for some families of abelian varieties.
We study several kinds of subschemes of mixed characteristic models of Shimura varieties which admit good (partial) toroidal and minimal compactifications, with familiar boundary stratifications and formal local structures, as if they were Shimura varieties in characteristic zero. We also generalize Koecher’s principle and the relative vanishing of subcanonical extensions for coherent sheaves, and Pink’s and Morel’s formulas for étale sheaves, to the context of such subschemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.