Context. In the queueing theory, the study of systems with arbitrary laws of the input flow distribution and service time is relevant because it is impossible to obtain solutions for the waiting time in the final form for the general case. Therefore, the study of such systems for particular cases of input distributions is important.
Objective. Getting a solution for the average delay in the queue in a closed form for queuing systems with ordinary and with shifted to the right from the zero point hyperexponential and hypererlangian distributions in stationary mode.
Method. To solve this problem, we used the classical method of spectral decomposition of the solution of the Lindley integral equation. This method allows to obtaining a solution for the average delay for two systems under consideration in a closed form. The method of spectral decomposition of the solution of the Lindley integral equation plays an important role in the theory of systems G/G/1. For the practical application of the results obtained, the well-known method of moments of probability theory is used.
Results. For the first time, a spectral decomposition of the solution of the Lindley integral equation for systems with ordinary and with shifted hyperexponential and hyperelangian distributions is obtained, which is used to derive a formula for the average delay in a queue in closed form.
Conclusions. It is proved that the spectral expansions of the solution of the Lindley integral equation for the systems under consideration coincide; therefore, the formulas for the mean delay will also coincide. It is shown that in systems with a delay, the average delay is less than in conventional systems. The obtained expression for the waiting time expands and complements the wellknown incomplete formula of queuing theory for the average delay for systems with arbitrary laws of the input flow distribution and service time. This approach allows us to calculate the average delay for these systems in mathematical packages for a wide range of traffic parameters. In addition to the average waiting time, such an approach makes it possible to determine also moments of higher orders of waiting time. Given the fact that the packet delay variation (jitter) in telecommunications is defined as the spread of the waiting time from its average value, the jitter can be determined through the variance of the waiting time.