Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The interaction of phytopathogenic organisms and plants generates physiological and biochemical changes in the latter. However, the effects on the plants are rarely visible in the infection first stages. Novel optical techniques can help to improve the early detection of phytopathogenic organisms in tomato without the plant sacrifice. In this work, infrared spectroscopy and chemometric methods were used to determinate the effects of Fusarium oxysporum in tomato plants cultivated in pots, analyzing fully expanded leaves. Fusarium oxysporum was molecular identified and its pathogenicity was tested in vitro. Three plants treatments were evaluated for 55 days post infection in pots in greenhouse under semi-controlled conditions: control, water stress, and fungal inoculated (1 × 108 conidia/mL). Phenotypical results were followed twice a week for eight weeks; the phenotypical characteristics were very similar in almost all sampling times except in height, especially in the first 27 days post infection, after this time the height was similar in the three treatments. The stalk and root-dried matter analysis do not show statistical differences; however, the infrared results, acquired from the adaxial surface of leaves, show differences in peaks associated with salicylic acid, jasmonic acid, abscisic acid, and proline in the first 27 days post infection. The principal component analysis–linear discriminant analysis were used to distinguish subtle biochemical changes between the three treatments, facilitating the early detection of the pathogen and its monitoring over time.
The interaction of phytopathogenic organisms and plants generates physiological and biochemical changes in the latter. However, the effects on the plants are rarely visible in the infection first stages. Novel optical techniques can help to improve the early detection of phytopathogenic organisms in tomato without the plant sacrifice. In this work, infrared spectroscopy and chemometric methods were used to determinate the effects of Fusarium oxysporum in tomato plants cultivated in pots, analyzing fully expanded leaves. Fusarium oxysporum was molecular identified and its pathogenicity was tested in vitro. Three plants treatments were evaluated for 55 days post infection in pots in greenhouse under semi-controlled conditions: control, water stress, and fungal inoculated (1 × 108 conidia/mL). Phenotypical results were followed twice a week for eight weeks; the phenotypical characteristics were very similar in almost all sampling times except in height, especially in the first 27 days post infection, after this time the height was similar in the three treatments. The stalk and root-dried matter analysis do not show statistical differences; however, the infrared results, acquired from the adaxial surface of leaves, show differences in peaks associated with salicylic acid, jasmonic acid, abscisic acid, and proline in the first 27 days post infection. The principal component analysis–linear discriminant analysis were used to distinguish subtle biochemical changes between the three treatments, facilitating the early detection of the pathogen and its monitoring over time.
The interaction of phytopathogenic organisms and plants generates physiological and biochemical changes in the latter, however the effects in the plants are rarely visible in the first stages of infection. Novel optical techniques can help to improve the early detection of the phytopathogenic organisms in tomato plants without the plant sacrifice. In this work infrared spectroscopy and chemometric methods were used in an intent to determinate the effects of Fusarium oxysporum in tomato leaves cultivated in pots. Fusarium oxysporum was molecular identified and its pathogenicity was test in vitro. Three treatments were evaluated, control, water stress, and fungal inoculated plants (1x108 conidia/ml); for 55 days post infection in pots in greenhouse under semi controlled conditions. Phenotypical results were followed twice a week for 8 weeks, the phenotypical characteristics were very similar in almost all sampling times except in height specially in the first 27 days post infection, after this time the height was similar in the three treatments. The stalk and root dried matter analysis does not show statistical differences; however, the infrared results, develop in the adaxial surface of leaves, shows differences in peaks associated to salicylic acid, jasmonic acid, abscisic acid, and proline in the first 27 days post infection. The PCA-LDA development in the time groups, help to have a good classification in the first 27 days as first group, and in the rest of the sampling times as second group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.