Undesired effects often occur in genetically modified (GM) plants, especially during metabolite engineering. Nevertheless, conducting a comparative study between GM and non-GM plants can identify the unintended alterations and facilitate the risk assessment of GM crops. This research compared the morphology and composition of a transgenic potato plant containing mannitol-1-phosphate dehydrogenase (MTLD), with its non-transgenic counterpart. The results indicated significant differences in plant height, number of leaves, length and width of leaves, as well as tuber number and weight between the transgenic and non-transgenic plants. However, compositional analysis revealed no significant differences in soluble protein, starch, total sugar, fructose, fiber, and ascorbate contents between MTLD-GM and non-GM potatoes. Nevertheless, sucrose and glucose levels were found to be higher in the transgenic potato tubers and leaves, respectively, when compared to the non-transgenic plants. In addition to ammonium, potassium, chloride, nitrite, and nitrate levels, significant differences were observed in the amino acids asparagine, aspartic acid, glutamic acid, isoleucine, leucine, lysine, serine, and valine between the GM and non-GM plants. Apart from the target gene product, mannitol, all the changes in chemical compositions observed in the transgenic potato plants fell within the ranges of normal variability for potato plants. Moreover, despite some phenotypical differences between the GM- MTLD potato and its non-GM counterpart, it is believed that this variation is a common phenomenon among potato varieties. In conclusion, the morphological and compositional analysis of the MTLD transgenic potato plant revealed substantial equivalence with its non-transgenic counterpart.