In this study, the compositions of transgenic potatoes (TPs) resistant to potato tuber moth (Phthorimaea operculella) were compared with those of its non-transgenic (NTP) counterparts. The light inducible promoter, phosphoenolpyruvate carboxylase led to the expression of Cry1Ab only in the leaves and light-treated tubers of the TPs. No significant differences were found in the moisture, ash, dry weight, total soluble protein, carbohydrate, starch, fiber, ascorbate, cations, anions, fatty acids, and glycoalkaloids contents of TP and NTP. Moreover, light treatment significantly affected the contents of ascorbate, acetate and nitrite anions, palmitic, stearic and linolenic fatty acids, α-haconine and α-solanine glycoalkaloids in TP and NTP tubers. While, significant differences were observed in the amino acid contents in light-treated tubers of TPs than the NTP ones. Although, light treatment in potato tubers resulted in marked metabolic changes, all the variations observed in the metabolites compositions were found to be within the desired reference ranges for potato plants. In conclusion, the results indicated that the TPs were substantially and nutritionally equivalent to the NTP counterparts.
Background Although quantitative single-cell analysis is frequently applied in animal systems, e.g. to identify novel drugs, similar applications on plant single cells are largely missing. We have exploited the applicability of high-throughput microscopic image analysis on plant single cells using tobacco leaf protoplasts, cell-wall free single cells isolated by lytic digestion. Protoplasts regenerate their cell wall within several days after isolation and have the potential to expand and proliferate, generating microcalli and finally whole plants after the application of suitable regeneration conditions. Results High-throughput automated microscopy coupled with the development of image processing pipelines allowed to quantify various developmental properties of thousands of protoplasts during the initial days following cultivation by immobilization in multi-well-plates. The focus on early protoplast responses allowed to study cell expansion prior to the initiation of proliferation and without the effects of shape-compromising cell walls. We compared growth parameters of wild-type tobacco cells with cells expressing the antiapoptotic protein Bcl2-associated athanogene 4 from Arabidopsis (AtBAG4). Conclusions AtBAG4-expressing protoplasts showed a higher proportion of cells responding with positive area increases than the wild type and showed increased growth rates as well as increased proliferation rates upon continued cultivation. These features are associated with reported observations on a BAG4-mediated increased resilience to various stress responses and improved cellular survival rates following transformation approaches. Moreover, our single-cell expansion results suggest a BAG4-mediated, cell-independent increase of potassium channel abundance which was hitherto reported for guard cells only. The possibility to explain plant phenotypes with single-cell properties, extracted with the single-cell processing and analysis pipeline developed, allows to envision novel biotechnological screening strategies able to determine improved plant properties via single-cell analysis.
Alternation of generations between a sporophytic and gametophytic developmental stage is a feature common to all land plants. This review will discuss the evolutionary origins of these two developmental programs from unicellular eukaryotic progenitors establishing the ability to switch between haploid and diploid states. We will compare the various genetic factors that regulate this switch and highlight the mechanisms which are involved in maintaining the separation of sporophytic and gametophytic developmental programs. While haploid and diploid stages were morphologically similar at early evolutionary stages, largely different gametophyte and sporophyte developments prevail in land plants and finally allowed the development of pollen as the male gametes with specialized structures providing desiccation tolerance and allowing long-distance dispersal. Moreover, plant gametes can be reprogrammed to execute the sporophytic development prior to the formation of the diploid stage achieved with the fusion of gametes and thus initially maintain the haploid stage. Upon diploidization, doubled haploids can be generated which accelerate modern plant breeding as homozygous plants are obtained within one generation. Thus, knowledge of the major signaling pathways governing this dual ontogeny in land plants is not only required for basic research but also for biotechnological applications to develop novel breeding methods accelerating trait development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.