Two pairs of awned and awnless near-isogenic lines of winter wheat were used in a field study in which canopy enclosure apparatus and carbon-14 dosing were employed to assess the contribution of the awns to photosynthesis and grain yield. Awns contributed an average of 12'2% to canopy gross photosynthesis but did not increase the net photosynthesis of the complete canopy. The presence of awns decreased photosynthesis in the remaining ear structures and in the flag and penultimate leaf laminae. Seven days after dosing during the phase of rapid grain filling, 80% of the carbon recovered was located in the grains. The awns intercepted 9% of the incident visible radiation when fully green, and senesced at similar rates as the ears and flag leaves.In a second experiment the effect of awns on grain yield and its components was investigated in crosses segregating for height and presence of awns. Awns did not increase grain yields in either experiment. It appears that for British conditions in the absence of severe drought there is little advantage to be gained at present by breeding awned varieties of wheat.