The dynamics of the D+MuH(υ=1) reaction has been investigated using time-independent quantum mechanical calculations. Total reaction cross sections and rate coefficients have been calculated for the two exit channels of the reaction leading respectively to DMu+H and DH+Mu. Over the 100-1000K temperature range investigated the rate coefficients for the DMu+H channel are of the order of 10 −10 cm 3 s −1 and those for the DH+Mu channel vary between 1·10 −12 −8·10 −11 cm 3 s −1 . These results point to a virtually barrierless reaction for the DMu+H channel and to the presence of a comparatively small barrier for the DH+Mu channel and are consistent with the profiles of their respective collinear vibrationally adiabatic potentials (VAPs). The effective barrier in the VAP of the DH+Mu channel is located in the reactants valley and, consequently, translation is found to be more efficient than vibration for the promotion of the reaction over a large energy interval in the post threshold region. Below this barrier, the DH+Mu channel can be accessible through an indirect mechanism implying a crossing from the DMu+H pathway.The most salient feature found in the present study is revealed in the total reaction cross section for the DMu+H channel, which shows a sharp resonance caused by the presence of a deep well in the vibrationally adiabatic potential. This well has a dynamical origin, reminiscent of that found recently in the vibrationally bonded BrMuBr complex [Fleming et al. Angew. Chem. Int. Ed. 53, 1, 2014], and is due to the stabilizing effect of the light Mu atom oscillating between the heavier H and D isotopes and to the bond softening associated with vibrational excitation of MuH.