Zymomonas mobilis has the special Entner-Doudoroff (ED) pathway and it has excellent industrial characteristics, including low cell mass formation, high-specific productivity,ethanol yield, notable ethanol tolerance and wide pH range, a relatively small genome size. In this study, the genome sequences of NRRL B-14023 and NRRL B-12526 were sequenced and compared with other strains to explore their evolutionary relationships and the genetic basis of Z. mobilis. The comparative genomic analyses revealed that the 8 strains share a conserved core chromosomal backbone. ZM4, NRRL B-12526, NRRL B-14023, NCIMB 11163 and NRRL B-1960 share 98% sequence identity across the whole genome sequences. Highly similar plasmids and CRISPR repeats were detected in these strains. A whole-genome phylogenetic tree of the 8 strains indicated that NRRL B-12526, NRRL B-14023 and ATCC 10988 had a close evolutionary relationship with the strain ZM4. Furthermore, strains ATCC29191 and ATCC29192 had distinctive CRISPR with a far distant relationship. The size of the pan-genome was 1945 genes, including 1428 core genes and 517 accessory genes. The genomes of Z. mobilis were highly conserved; particularly strains ZM4, NRRL B-12526, NRRL B-14023, NCIMB 11163 and NRRL B-1960 had a close genomic relationship. This comparative study of Z. mobilis presents a foundation for future functional analyses and applications.