To date, in the literature, there has been no study on the comparison of hybrid (timber and concrete) buildings with counterparts made of timber and concrete as the most common construction materials, in terms of the life cycle assessment (LCA) and the carbon footprint. This paper examines the environmental impacts of a five-story hybrid apartment building compared to timber and reinforced concrete counterparts in whole-building life-cycle assessment using the software tool, One Click LCA, for the estimation of environmental impacts from building materials of assemblies, construction, and building end-of-life treatment of 50 years in Finland. Following EN 15978, stages of product and construction (A1–A5), use (B1–B6), end-of-life (C1–C4), and beyond the building life cycle (D) were assessed. The main findings highlighted are as following: (1) for A1–A3, the timber apartment had the smallest carbon footprint (28% less than the hybrid apartment); (2) in A4, the timber apartment had a much smaller carbon footprint (55% less than the hybrid apartment), and the hybrid apartment had a smaller carbon footprint (19%) than the concrete apartment; (3) for B1–B5, the carbon footprint of the timber apartment was larger (>20%); (4) in C1–C4, the carbon footprint of the concrete apartment had the lowest emissions (35,061 kg CO2-e), and the timber apartment had the highest (44,627 kg CO2-e), but in D, timber became the most advantageous material; (5) the share of life-cycle emissions from building services was very significant. Considering the environmental performance of hybrid construction as well as its other advantages over timber, wood-based hybrid solutions can lead to more rational use of wood, encouraging the development of more efficient buildings. In the long run, this will result in a higher proportion of wood in buildings, which will be beneficial for living conditions, the environment, and the society in general.