Background
Grasslands in the Arctic tundra undergo irreversible degradation due to climatic changes and also over-exploitation and depletion of scarce resources. Comprehensive investigations of cytogenomic structures of valuable Arctic and sub-Arctic grassland species is essential for clarifying their genetic peculiarities and phylogenetic relationships and also successful developing new forage grass cultivars with high levels of adaptation, stable productivity and longevity. We performed molecular cytogenetic characterization of seven insufficiently studied pasture grass species from related genera Alopecurus, Arctagrostis, Beckmannia, Deschampsia and Holcus (Poaceae) which are the primary fodder resources in the Arctic tundra.
Results
For these species, integrated schematic habitat maps were constructed based on the available data on their distribution in Eurasia. The species karyotypes were examined with the use of DAPI-banding, fluorescence in situ hybridization with 35S rDNA, 5S rDNA and the (GTT)9 microsatellite motif and also sequential rapid genomic in situ hybridization with genomic DNAs of Deschampsia sukatschewii, Holcus lanatus and Deschampsia flexuosa. Cytogenomic structures of the studied species were specified; peculiarities and common features of their genomes were revealed. Different chromosomal rearrangements were detected in Beckmannia syzigachne, Deschampsia cespitosa and D. flexuosa; B chromosomes with distinct DAPI-bands were observed in karyotypes of D. cespitosa and H. lanatus.
Conclusions
The peculiarities of distribution patterns of the examined chromosomal markers and also presence of common homologous DNA repeats in karyotypes of the studies species allowed us to verify their relationships. The obtained unique data on distribution areas and cytogenomic structures of the valuable Arctic and sub-Arctic pasture species are important for further genetic and biotechnological studies and also plant breeding progress.