Scoparone is an active ingredient of Yinchenhao (Artemisia annua L.), a well-known Chinese medicinal plant, and has been utilized in prevention and therapy of liver damage. However, the molecular drug targets associated with the pharmacological effects of scoparone are largely unknown. In the present article, we extend the previous research on Yinchenhao through a study of its active ingredient and thus the putative targets of scoparone. We employed two-dimensional gel electrophoresis, and all proteins expressed were identified by MALDI-TOF/TOF MS and database research. Protein-interacting networks and pathways were also mapped and evaluated. The possible protein network associated with scoparone was constructed, and contribution of these proteins to the protective effect of scoparone against the carbon tetrachloride-induced acute liver injury in rats are discussed herein. Hepatoprotective effects of scoparone on liver injury in rats were associated with regulated expression of six proteins which were closely related in our protein-protein interaction network, and appear to be involved in antioxidation and signal transduction, energy production, immunity, metabolism, and chaperoning. These observations collectively provide new insights on the molecular mechanisms of scoparone action against hepatic damage in rats.