We
present state-to-state differential cross sections for collisions
of NO molecules (X2Π1/2, j = 1/2f) with para-H2 and ortho-D2 molecules, at a collision
energy of 510 and 450 cm–1, respectively. The angular
scattering distributions for various final states of the NO radical
are measured with high resolution using a crossed molecular beam apparatus
that employs the combination of Stark deceleration and velocity map
imaging. Rotational rainbows as well as diffraction oscillations are
fully resolved in the scattering images. The observed angular scattering
distributions are in excellent agreement with the cross sections obtained
from quantum close-coupling scattering calculations based on recently
computed NO–H2 potential energy surfaces, except
for excitation of NO into the j = 7/2f channel. For
this particular inelastic channel, a significant discrepancy with
theory is observed, despite various additional measurements and calculations,
at present, not understood.