Isolated molecular clusters of adenine, cytosine, thymine and uracil with Pt(CN)6(2-) and Pt(CN)4(2-) were studied for the first time to characterize the binding and reactivity of isolated transition metal complex ions with nucleobases. These clusters represent model systems for understanding metal complex-DNA adducts, as a function of individual nucleobases. Collisional excitation revealed that the clusters decay on the ground electronic surface by either solvent evaporation (i.e. loss of a nucleobase unit from the cluster) or via proton transfer from the nucleobase to the dianion. The Pt(CN)6(2-)-nucleobase clusters decay only by solvent evaporation, while the Pt(CN)4(2-) clusters fragment by both pathways. The enhanced proton-transfer reactivity of Pt(CN)4(2-) is attributed to the higher charge-density of the ligands in this transition metal anion. % fragmentation curves of the clusters reveal that the adenine clusters display distinctively higher fragmentation onsets, which are traced to the propensity of adenine to form the shortest intercluster H-bond. We also present laser electronic photodissociation measurements for the Pt(CN)6(2-)·Ur, Pt(CN)4(2-)·Ur and Pt(CN)4(2-)·Ur2 clusters to illustrate the potential of exploring metal complex DNA photophysics as a function of nucleobase within well-defined gaseous clusters. The spectra reported herein represent the first such measurements. We find that the electronic excited states decay with production of the same fragments (associated with solvent evaporation and proton transfer) observed upon collisional excitation of the electronic ground state, indicating ultrafast deactivation of the excited-state uracil-localized chromophore followed by vibrational predissociation.
We have performed a crossed molecular beam velocity-map ion imaging study of state-to-state rotational energy transfer of NO(AΣ, v = 0, N = 0, j = 0.5) in collisions with N and have measured rotational angular momentum polarization dependent images of product NO(A) rotational levels N' = 3 and 5-11 for collisions at an average energy of 797 cm. We present an extension of our previously published [T. F. M. Luxford et al., J. Chem. Phys. 145, 174 304 (2016)] image analysis which includes the effect of rotational excitation of the unobserved collision partner and critically evaluate this methodology. We report differential cross sections and angle-resolved angular momentum alignment moments for NO(A) levels N' = 3 and 5-11 as a function of the rotational excitation of the coincident N partner. The scattering dynamics of NO(A) + N share similarities with those previously reported for NO(A) + Ne and Ar, although with detailed differences. We use comparison of the measurements reported here to the scattering of NO(A) with Ne, and the known NO(A)-Ne potential energy surface, to draw conclusions about the previously unknown NO(A)-N potential.
We present a crossed molecular beam scattering study, using velocity-map ion-imaging detection, of state-to-state rotational energy transfer for NO(A(2)Σ(+)) in collisions with the kinematically identical colliders He and D2. We report differential cross sections and angle-resolved rotational angular momentum polarization moments for transfer of NO(A, v = 0, N = 0, j = 0.5) to NO(A, v = 0, N' = 3, 5-12) in collisions with He and D2 at respective average collision energies of 670 cm(-1) and 663 cm(-1). Quantum scattering calculations on a literature ab initio potential energy surface for NO(A)-He [J. Kłos et al., J. Chem. Phys. 129, 244303 (2008)] yield near-quantitative agreement with the experimental differential scattering cross sections and good agreement with the rotational polarization moments. This confirms that the Kłos et al. potential is accurate within the experimental collisional energy range. Comparison of the experimental results for NO(A) + D2 and He collisions provides information on the hitherto unknown NO(A)-D2 potential energy surface. The similarities in the measured scattering dynamics of NO(A) imply that the general form of the NO(A)-D2 potential must be similar to that calculated for NO(A)-He. A consistent trend for the rotational rainbow maximum in the differential cross sections for NO(A) + D2 to peak at more forward angles than those for NO(A) + He is consistent with the NO(A)-D2 potential being more anisotropic with respect to NO(A) orientation. No evidence is found in the experimental measurements for coincident rotational excitation of the D2, consistent with the potential having low anisotropy with respect to D2. The NO(A) + He polarization moments deviate systematically from the predictions of a hard-shell, kinematic-apse scattering model, with larger deviations as N' increases, which we attribute to the shallow gradient of the anisotropic repulsive NO(A)-He potential energy surface.
We present a crossed molecular beam velocity-map ion imaging study of state-to-state rotational energy transfer of NO(AΣ, v = 0, N = 0, j = 0.5) in collisions with Ne atoms. From these measurements, we report differential cross sections and angle-resolved rotational angular momentum alignment moments for product states N' = 3 and 5-10 for collisions at an average energy of 523 cm, and N' = 3 and 5-14 for collisions at an average energy of 1309 cm, respectively. The experimental results are compared to the results of close-coupled quantum scattering calculations on two literature ab initio potential energy surfaces (PESs) [Pajón-Suárez et al., Chem. Phys. Lett. 429, 389 (2006) and Cybulski and Fernández, J. Phys. Chem. A 116, 7319 (2012)]. The differential cross sections from both experiment and theory show clear rotational rainbow structures at both collision energies, and comparison of the angles observed for the rainbow peaks leads to the conclusion that Cybulski and Fernández PES better represents the NO(AΣ)-Ne interaction at the collision energies used here. Sharp, forward scattered (<10°), peaks are observed in the experimental differential cross sections for a wide range of N' at both collision energies, which are not reproduced by theory on either PES. We identify these as L-type rainbows, characteristic of attractive interactions, and consistent with a shallow well in the collinear Ne-N-O geometry, similar to that calculated for the NO(AΣ)-Ar surface [Kłos et al., J. Chem. Phys. 129, 244303 (2008)], but absent from both of the NO(AΣ)-Ne surfaces tested here. The angle-resolved alignment moments calculated by quantum scattering theory are generally in good agreement with the experimental results, but both experiment and quantum scattering theories are dramatically different to the predictions of a classical rigid-shell, kinematic-apse conservation model. Strong oscillations are resolved in the experimental alignment moments as a function of scattering angle, confirming and extending the preliminary report of this behavior [Steill et al., J. Phys. Chem. A 117, 8163 (2013)]. These oscillations are correlated with structure in the differential cross section, suggesting an interference effect is responsible for their appearance.
We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm(-1). We report differential cross sections for scattering into NO(A(2)Σ(+), v = 0, N' = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N'. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.