Tooth ankylosis is a pathological condition of periodontal ligament (PDL) restoration after tooth replantation. Platelet-derived growth factor-BB (PDGF-BB) has been proposed as a promising factor for preventing tooth ankylosis. Using rat tooth replantation model, we investigated whether PDGF-BB accelerates the repair of PDL after tooth replantation without ankylosis, and its molecular mechanisms. In PDGF-BB pretreated replanted teeth (PDGF-BB group), ankylosis was markedly reduced and functionally organized PDL collagen fibers were restored; the mechanical strength of the healing PDL was restored to an average of 76% of that in non-replanted normal teeth at 21 days. The numbers of PDGF-Rβ- and BrdU-positive cells in the periodontal tissues of the PDGF-BB group were greater than those of atelocollagen pretreated replanted teeth (AC group). Moreover, in the PDGF-BB group, the periodontal tissues had fewer osteocalcin-positive cells and decreased number of nuclear β-catenin-positive cells compared to those in the AC group. In vitro analyses showed that PDGF-BB increased the proliferation and migration of human periodontal fibroblasts. PDGF-BB downregulated mRNA expressions of RUNX2 and ALP, and inhibited upregulatory effects of Wnt3a on β-catenin, AXIN2, RUNX2, COL1A1, and ALP mRNA expressions. These findings indicate that in tooth replantation, topical PDGF-BB treatment enhances cell proliferation and migration, and inhibits canonical Wnt signaling activation in bone-tooth ankylosis, leading to occlusal loading of the PDL tissues and subsequent functional restoration of the healing PDL. This suggests a possible clinical application of PDGF-BB to reduce ankylosis after tooth replantation and promote proper regeneration of PDL.